这样在提高生产率的同时还能提高零件的表面质量和加工精度。
金属切削机床
一般来说,高速加工的切削速度和进给速度都比常规加工要高出一个数量级。因此高速主轴和快速进给系统是实现高速加工的两项关键技术,其中对进给系统提出了以下新要求:(1)进给速度必须与高速主轴相匹配,达到60m/min或更高:(2)加速度要大,这样才能在最短的时间和行程内达到要求的高速度,至少要1~2g:(3)动态性能要好,能实现快速的伺服控制和误差补偿,具有较高的定位精度和刚度。
长期以来,数控机床的进给系统主要是“旋转伺服电动机,滚珠丝杠”,这种进给系统所能达到的最高进给速度为90~120m/min,最大加速度只有1.5g。同时,由于从电动机主轴到工作台之间存在联轴节、丝杠、螺母、轴承、支架等一系列中间环节,当进给部件要完成启动、加减速、反转、停车等动作时,这些机械元件产生的弹性变形、摩擦、反向间隙等,会造成进给运动的滞后和其它许多非线性误差:这些中间环节也加大了系统的惯性质量,影响了对运动指令的快速响应。另外,丝杠是细长杆,在力和热的作用下,会产生变形,影响加工精度。
为了克服传统进给系统的缺点,简化机床结构,满足高速精密加工的要求,人们开始研究新型的进给系统,直线电动机就是最有前途的快速进给系统。它取消了源动力和工作台部件之间的一切中间传动环节,使得机床进给传动链的长度为零,这就是所谓的“直接驱动”或“零传动”。
2直线电动机的原理和分类
所谓直线电动机就是利用电磁作用原理,将电能直接转换直线运动动能的设备。在实际的应用中,为了保证在整个行程之内初级与次级之间的耦合保持不变,一般要将初级与次级制造成不同的长度。直线电动机与旋转电动机类似,通入三相电流后,也会在气隙中产生磁场,如果不考虑端部效应,磁场在直线方向呈正弦分布,只是这个磁场是平移而不是旋转的,因此称为行波磁场。行波磁场与次级相互作用便产生电磁推力,这就是直线电动机运行的基本原理。由于直线电动机和旋转电动机之间存在以上对应关系,因此每种旋转电动机都有相对应的直线电动机,但直线电动机的结构形式比旋转电动机更灵活。直线电动机按工作原理可分为:直线直流电动机、直线感应电动机、直线同步电动机、直线步进电动机、直线压电电动机及直线磁阻电动机:按结构形式可分为平板式、U形及圆筒式。
3直线电动机的优缺点分析
直线电动机的特点在于直接产生直线运动,与间接产生直线运动的“旋转电动机,滚动丝杠”相比,其优点是(具体性能见下表):
(1)没有机械接触,传动力是在气隙中产生的,除了导轨外没有其它摩擦:(2)结构简单,体积小,以最少的零部件数量实现直线驱动,而且是只有一个运动的部件:(3)行程在理论上不受限制,而且性能不会因为行程的改变而受到影响:(4)可以提供很宽的速度范围,从每秒几微米到数米,特别是高速是其一个突出的优点:(5)加速度很大,最大可达10g:(6)运动平稳,这是因为除了起支撑作用的直线导轨或气浮轴承外,没有其它机械连接或转换装置的缘故:(7)精度和重复精度高,因为消除了影响精度的中间环节,系统的精度取决于位置检测元件,有合适的反馈装置可达亚微米级:(8)维护简单,由于部件少,运动时无机械接触,从而大大降低了零部件的磨损,只需很少甚至无需维护,使用寿命更长。
直线电动机与“旋转电动机,滚珠丝杠”传动性能比较表
直线电动机的缺点是:首先直线电动机端部磁场的畸变影响到行波磁场的完整性,使直线电动机损耗增加,推力减小,而且存在较大的推力波动,这就是直线电动机特有的“端部效应(Edge Effect)”。直线电动机的结构特点决定了端部效应是不可避免的。其次直线电动机的控制难度大,因为在电动机的运行过程中负载(如工件重量、切削力等)的变化、系统参数摄动和各种干扰(如摩擦力等),包括端部效应都直接作用到电动机上,没有任何缓冲或削弱环节,如果控制系统的鲁棒性不强,会造成系统的失稳和性能的下降。其他缺点包括安装困难、需要隔磁、效率低、成本高等。