就现场平衡的方法而言,可以分为测幅平衡和测相平衡。测幅平衡只需要测量振动的大小,用周移法、三点法等方法进行计算。这种方法比较简单易行,但精度低,启动次数多;测相平衡采用可同时测量振幅和相位的仪表。平衡时首先在转子上加一个(或一组)试验质量,通过加重前后振幅和相位的变化,计算校正质量的大小和方向。这种方法精度高,启动次数少。本文将介绍用测相法对风机进行的平衡。
一、平衡原理
1.1 不平衡的诊断
一般来说,只要振动成分中基频占主导地位,就可以认定存在不平衡。基频的幅值取决于不平衡的大小和支撑系统的刚度,相位与不平衡的角度有关。
1.2 刚性转子的平衡
所谓刚性转子,是指转子的工作转速低于一阶临界转速,不平衡离心力较小,由此引起的挠曲变形小得可以忽略。
刚性转子存在两种形式的不平衡:静不平衡和力偶不平衡。从理论上讲,在两个平面平衡可以同时消除这两种形式的不平衡。
1.3 柔性转子的平衡
柔性转子的平衡方法称为振型法。所谓振型法是根据柔性转子的振动理论和振型函数的正交性,分别对转子的各阶振型进行平衡的一种挠性转子平衡方法。
1.4 试验质量的选择
测相平衡的步骤:首先测量电机转子的原始振动,然后在转子上加一个(或一组)试验质量,并测量试加后的振动值。依据试加前后的振动值就可确定校正质量的大小和角度。
如何确定试验质量的大小和角度是平衡过程的一个重要问题。
由振动相位和机械滞后角可以确定试验质量的角度。对于刚性转子而言,从理论上讲滞后角接近于零度。当然由于测试误差的存在,会与零度有一定的偏差,但总的来说偏差不会太大。对于柔性转子滞后角,需要结合不平衡的性质以及临界转速来考虑。
试验质量的大小主要依靠经验确定。试验质量过大,有可能使振动进一步增大,甚至无法启动;试验质量过小,引起的振动变化太小,使平衡计算的误差大。
2 风机的平衡
风机可以看作具有集中质量的单轮盘转子。平衡时只需要一个校正平面,校正质量安装在叶轮上。若叶轮有平衡槽,平衡时将校正质量安装在平衡槽内;若叶轮没有平衡槽,平衡时将校正质量焊接在轮盘的外缘。
风机平衡如果没有影响系数时,试验质量选择范围在300~500g。
例1 宣威电厂7A送风机
该风机转速为1500r/min。运行中风机轴承的振动值达到220μm。振动为基频,判断为不平衡引起。风机叶轮有平衡槽,可在此处加重。平衡过程如表1所示。
平衡进行了两次。第一次平衡后,依据计算结果将平衡角度调整了50°,振动达到满意水平(见表1)。
表2电动机平衡 序号 摘要 电机轴承振动μm∠(°) 1 2 ⊥ → ⊥ → 0 平衡前 31∠157 227∠127 36∠176 220∠132 1 平衡后 11∠243 22∠243 14∠253 25∠222
例2 神头二电厂2号引风机振动的诊断与平衡 山西神头第二发电厂一号炉2号引风机,轴功率2987kW,额定转速为1480r/min,叶轮直径2780mm,风机转子重约8t。配套电机功率3500kW,转子重3.5t,平衡槽半径260mm。支持轴承均为滚珠轴承,轴系示意图见图2。