交流电机的基本控制方法
2013-08-28 09:47:27   来源:www.simotd.com   评论:0 点击:

【西安西玛电机销售:029-82352998】要获得高动态性能,必须依据交流电机的动态数学模型。它的动态数学模型是非线性多变量的,其输入变量为定子电压和频率,输出变量为转速和磁链。当前最成熟的控制方法有矢量控制和直接转矩控制两种。
要获得高动态性能,必须依据交流电机的动态数学模型。它的动态数学模型是非线性多变量的,其输入变量为定子电压和频率,输出变量为转速和磁链。当前最成熟的控制方法有矢量控制和直接转矩控制两种。
 
(1)矢量控制(Vector Control,VC)它是由 Blasehke F.在 1971 年提出。根据电机的动态数学模型,利用矢量变换方法,将异步电机模拟成直流电机,从而获得良好的动态调速性能。
 
它可分为转子磁场定向控制和定子磁场定向控制两种,其中转子磁链定向控制以转子磁链为参考坐标,通过静止坐标系到旋转坐标系间的坐标变换,将定子电流分解成产生磁链的励磁分量和产生转矩的转矩分量,并使两分量相互独立而解耦,然后分别对磁链和转矩独立控制。通常的控制策略是保持励磁电流不变,改变转矩电流来控制电机转矩;定子磁场定向控制是将同步旋转坐标系 d 轴放置在定子磁场方向上,有利于定子磁通观测器的实现,减弱转子回路参数对控制系统的影响,但低速运行时,定子电阻压降不容忽略,反电势测量误差较大,导致定子磁通观测不准,影响系统性能。若采用转子方程实现磁通观测,会增加系统复杂性。
 
此法优点:实现了磁链与转矩的解耦,可对它们分别独立控制,明显改善了控制性能。
 
此法缺点:对电机参数的依赖性大,而电机参数存在时变性,难以达到理想的控制效果;即使电机参数与磁链能被精确测量,也只有稳态时才能实现解耦,弱磁时耦合仍然存在;需假设电机中只有基波正序磁势,太理论化,不完全符合实际;若解耦后的控制回路采用普通 PI 调节器,其性能受参数变化及各种不确定性影响严重。
 
矢量控制已获得非常广泛应用于交流电机控制[3]
 
,且为克服其缺点,它常与其他控制方法相结合来使用。
 
(2)直接转矩控制(Direct Torque Control,DTC)它是由德国 Depenbrock M.于 1985 年提出,它摒弃了解耦思想,直接控制电机转矩,不需要复杂的变换与计算,把电机和逆变器看成一个整体,采用空间电压矢量分析方法在定子坐标系下分析交流电机的数学模型,计算定子磁通和转矩,通过PWM 逆变器的开关状态直接控制转矩。
 
此法优点:控制思路新颖,采用“砰-砰”控制,系统结构简洁,无需对定子电流解耦,静、动态性能优良;采用定子磁链进行磁场定向,只要知道定子电阻就可以把它观测出来,使系统性能对转子参数呈现鲁棒性;可被推广到弱磁调速范围。
 
此法缺点:功率开关器件存在一定的通、断时间,为防止同一桥臂的两开关发生直通而短路,必须在控制信号中设置死区,但死区会使在各调制周期内引起微小畸变,畸变积累后会使逆变器的输出电流产生畸变,引起转矩脉动,低速时死区效应更明显;低速时定子电阻的变化引起的定子电流和磁链的畸变;对逆变器开关频率提高的限制较大;无电流环,不能做电流保护,需加限流措施。
 
此法已逐步大量 用于交流电机控制,且为克服它的缺点,常与其他控制方法相结合。
 
VC 和 DTC 两法表面上不同,控制性能上各有特色,但本质是相同的,都采用转矩、磁链分别控制,其中转矩控制环(或电流的转矩分量环)都处于转速环的内环,可抑制磁链变化对转速子系统的影响,使转速和磁链子系统近似解耦。

本 文 地 址http://www.simotd.com/html/2013/diandongji_0828/2271.html
交流电机的基本控制方法相关热词搜索:交流电机

上一篇:高压电动机集电环爆炸
下一篇:高压电机轴承选型的探讨

分享到: 收藏